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We propose a systematic procedure to directly extract the Eliashberg function for electron-phonon
coupling from high-resolution angle-resolved photoemission measurement. The procedure is success-
fully applied to the Be�1010� surface, providing new insights into electron-phonon coupling at this
surface. The method is shown to be robust against imperfections in experimental data and suitable for
wider applications.
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Electron-phonon coupling (EPC) is the basis for many
interesting phenomena in condensed matter physics
such as conventional superconductivity. Its possible role
in the high-Tc cuprates is also being actively discussed [1–
3]. Experimentally, recent advances in high-resolution
angle-resolved photoemission spectroscopy (ARPES)
have stimulated many studies on EPC in various systems
[3–12]. These measurements usually yield the mass en-
hancement factor � [13], which characterizes the strength
of EPC, along with some primitive information about its
spectral structure such as the dominant phonon mode.
It is highly desirable to take advantage of these high-
resolution data and obtain full characteristics of EPC.

Theoretically, the full characteristics of EPC are de-
scribed by the Eliashberg function �2F�!; �; k̂k� [13], the
total transition probability of a quasiparticle from/to the
state ��; k̂k� by coupling to boson (phonon) modes of
frequency ! [14]. Essentially all physical quantities re-
lated to EPC can be deduced from the function. For
instance, the mass enhancement factor � is related to
the Eliashberg function by [13]
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In this Letter, we present a systematic procedure to
directly extract the Eliashberg function from the high-
resolution ARPES data. The maximum entropy method
(MEM) [15] is used to overcome the numerical instability
inherent to such efforts [16]. With Eq. (1), it also reliably
estimates the mass enhancement factor �, without ad hoc
assumptions on phonon models or requiring low tempera-
ture measurements [5–12].

This procedure is illustrated using new high-resolution
ARPES data at the Be�1010� surface, which is ideal for

testing the new procedure because Be has a broad phonon
band (�80 meV), thereby removing the need for super-
high energy resolution. Also, measurements [10,17] and
theoretical calculations [18] for this surface have been
published, providing references for comparison.

The photoemission experiments were performed at the
Advanced Light Source (ALS) on Beamline 10.0.1 using a
display high-resolution Scienta 2002 energy analyzer at
24 eV photon energy with total energy resolution 10 meV
and angular resolution �0:15� in 6� 10�11 Torr vacuum
and at T � 30 K. The cleaning procedure for the
Be�1010� sample was described earlier [5].

Figure 1(a) shows the momentum distribution curves
(MDCs) of the Be�1010� S1 surface state. The quasipar-
ticle dispersion ��k� is determined from MDCs by
Lorentzian fittings [8], and is shown in Fig. 1(b). The
real part of the self-energy is calculated by Re���; k̂k� �
��k� � �0�k�, where �0�k� is the bare quasiparticle dis-
persion without EPC. Within the small energy scale
considered, it is sufficient to approximate �0�k� 	
� �h�F�k� kF� 
 ��k� kF�2. Following the extrapola-
tion procedure that will be detailed later, we find that
�h�F � 2:95 eV �A and � � 6:74 eV �A2 provide the best fit
to the data, as shown in Fig. 1(b). The resulting real part
of the self-energy for the S1 state is shown in Fig. 2(a).

The real part of the self-energy is related to the
Eliashberg function by [13]

R e���; k̂k;T� �
Z 1
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�
�
kT

;
!
kT

�
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where K�y; y0� � R1
�1 dx f�x� y�2y0=�x2 � y02� with f�x�

being the Fermi distribution function. Equation (2) is
valid for a normal Fermi liquid coupled with boson
field(s). For a normal metal that has no sharp electronic
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structure around the Fermi surface within the small en-
ergy scale of the phonon bandwidth (80 meV), depen-
dence on the initial state energy � can be ignored [13].
Thus, �2F�!; �; k̂k� in Eq. (2) can be replaced by the
Eliashberg function at the Fermi level �2F�!� �
�2F�!; �F; k̂k�.

With this simplification, Eq. (2) poses an integral in-
version problem for extracting �2F�!� from the real part
of the self-energy. The most straightforward way to do
the inversion is the least-squares method that minimizes

�2 �
XND

i�1

�Di � Re���i�2
�2

i

; (3)

against the Eliashberg function �2F�!�, where Di are the
data for the real part of the self-energy at energy �i;
Re���i� is defined by Eq. (2) and is a functional of
�2F�!�; �i are the error bars of the data; ND is the total
number of data points. Unfortunately, such a straightfor-
ward approach fails because the inversion problem de-
fined by Eq. (2) is unstable mathematically and the direct
inversion tends to exponentially amplify the high-
frequency data noise, resulting in unphysical fluctuations
and negative values in the extracted Eliashberg function.

To overcome the numerical instability in the direct
inversion, one needs to incorporate the physical con-
straints into the fitting process, for example, the
Eliashberg function must be positive. To do this, we
employ the MEM [15], which minimizes the functional:

L � �2

2
� aS; (4)

where �2 is defined in Eq. (3), and S is the generalized
Shannon-Jaynes entropy,

S �
Z 1

0
d!

�
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2F�!�
m�!�

�
:

(5)

The entropy term imposes physical constraints to the
fitting and is maximized when �2F�!� � m�!�, where
m�!� is the constraint function and should reflect our best
a priori knowledge for the specific system. In this study,
we use the following generic form:

m�!� �
8<
:
m0�!=!D�2 ! � !D

m0 !D <! � !m

0 ! > !m;
(6)

which encodes the basic physical constraints of the
Eliashberg function: (i) It is positive; (ii) it vanishes at
! ! 0 and above a maximal phonon frequency.

The multiplier a in Eq. (4) is a determinative parameter
that controls how close the fitting should follow the data
while not violating the physical constraints. When a is
small, the fitting will follow the data as closely as pos-
sible, and when a is large the extracted Eliashberg func-
tion will not deviate much from m�!�. There exist a
number of schemes (e.g., historic, classic, Bryan’s
method, etc.) that choose the optimal value of a based
on the data and the constraint function m�!� [15]. In this
study, the classic method is used.
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FIG. 2. (a) Real part of the self-energy. Solid line shows the
MEM fitting. The error bars �i � 1 meV are determined from
the noise level of the data. (b) Extracted Eliashberg function.
The dashed line shows the constraint function m�!� used:
!D � 15 meV, !m � 100 meV, and m0 � 0:15 [See Eq. (6)].
The extracted Eliashberg function is also shown in (a) to
indicate the origin of its structures in the self-energy (note
the x axis is reversed).
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FIG. 1 (color). (a) Momentum distribution curves (MDCs) of
S1 surface state of Be�1010� along �AA ��� . The numbers denote
the initial state energies in meV. The solid lines show the
Lorentzian fittings. (b) Quasiparticle dispersion determined
from the MDCs (circles). The solid lines show fittings to the
dispersion with the procedure detailed in the text using differ-
ent bare quasiparticle dispersions �0�k�. The parameters
�F (eV �A= �h) and � (eV �A2� of �0�k� are shown in the inset.
The dashed line indicates �0�k� that results in the best fit.
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To minimize Eq. (4), Eqs. (2) and (5) are discretized
using the iterated trapezoid rule for the integral over !,
and �2F�!� is optimized using a Newton algorithm
developed by Skilling and collaborators that searches
along three prescribed directions in each iterative step.
Details of the algorithms can be found in Ref. [15].

Figure 2(b) shows the extracted Eliashberg function of
the Be�1010� S1 surface state. It resolves a number of
peaks at 40, 60, and 75 meV. Low energy modes with !<
30 meV are also evident. When compared with the first-
principles calculations of the phonon dispersion of this
system [18], the resolved peaks correspond well to those
surface phonon modes. The extracted Eliashberg function
automatically cuts off at �80 meV, consistent with the
calculation [18]. The mass enhancement factor � is calcu-
lated by Eq. (1), yielding a value 0:68� 0:08, consistent
with � � 0:65 obtained in previous measurements using
temperature-dependent line shapes [10].

We have carried out systematic tests to assess the
effects of various parameters involved in the fitting and
the robustness of the procedure against data imperfec-
tions, as summarized in Fig. 3. These tests, which will be
detailed below, show that the fitting procedure can be
well controlled to provide reliable physical insights.

The most important fitting parameter is the multiplier
a. Figure 3(a) shows the fitting results as a function of a.
Changing the value of a does not change qualitative
features such as the number and the positions of the
peaks, although the quantitative changes of the ‘‘con-
trast’’ are evident. Furthermore, the estimate of � is not
sensitive to the value of a: for a changing from 0.01 to 100,
� varies only between 0.64 and 0.69.

The classic method determines the optimal value of a
based on the data and the constraint function. Inevitably,
the parameters m0, !R, and !m in the constraint function
influence the decision of classic method, as demonstrated
in Fig. 3(b). A proper choice of these parameters is
important to ensure that the algorithm makes the correct
decision. In Fig. 2(b), m0 is roughly the average height of
the Eliashberg function, !m is slightly higher than the
maximal phonon frequency, and a small but nonzero
value of !D is chosen to suppress the artifact near the
zero frequency as seen in Fig. 3(b) for !D � 0. In this
way, we have a constraint function that is close enough to
the real Eliashberg function and is still sufficiently struc-
tureless for an unbiased fitting.

The parameters in the bare particle dispersion, �F and
�, are determined from extrapolation to the higher initial
state energy. �F and � are interdependent because, given a
value of �, there is only one value of �F (within a small
window) that can yield the real part of the self-energy
which has the correct asymptotic behavior and can be
fitted by Eq. (2). To find the optimal bare quasiparticle
dispersion, we tried a number pairs of (�F, �) to generate
the real part of the self-energy, then ran the MEM fitting
within � < 150 meV. The optimal pair of (�F, �) is the
one that provides the best fit to the dispersion data in the

larger energy window (300 meV). This procedure is dem-
onstrated in Fig. 1(b). The corresponding extracted
Eliashberg functions for different values of (�F, �) are
shown in Fig. 3(c). It can be seen that fittings with less
optimal values of (�F, �) yield results rather close to the
nominal one. This removes the need for high accuracy in
determining the bare quasiparticle dispersion.

The MEM fitting is rather robust against the data
imperfections such as accidental data anomaly, as dem-
onstrated in Fig. 3(d). The robustness has two origins:
(i) Physical constraints built in the fitting automatically
filter out those unphysical data fluctuations; (ii) although
one data point may be anomalous, it is statistically less
likely that a number of data points become anomalous
simultaneously in a coherent way.

Figure 4 provides a further test on the robustness of the
MEM fitting. Here, we generate a set of data of the real
part of the self-energy from a predefined Eliashberg
function. Gaussian noise is added to simulate the realistic
experimental situation. Figure 4 shows a typical result of
the test. It can be seen that the MEM successfully extracts
the overall qualitative features of the predefined Eliash-
berg function although the data are rather noisy. The mass
enhancement factor calculated from Eq. (1) is 0:35�
0:05, which is very close to the exact value 0.35.

Our MEM fitting scheme can be further improved by
using a better constraint function m�!�. For instance, if
the phonon density of states F�!� is known from other
reliable sources, one can use m�!� � �2
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FIG. 3 (color). Various robustness tests to the fittings. The red
line in each figure indicates the nominal result as presented in
Fig. 2(b). (a) Extracted Eliashberg functions for different
values of a. (b) Extracted Eliashberg functions for different
constraint function parameters. For each curve, one of the
parameters used in Fig. 2(b) is changed: A, !D ) 0; B, !m )
200 meV; C, m0 ) 0:3. The corresponding values of a deter-
mined by the classic method are: A, a � 1:13; B, a � 0:22;
C, a � 0:43. The nominal result has a � 1:44. (c) Extracted
Eliashberg functions of the fittings A–E shown in Fig. 1(b) for
different bare particle dispersions. (d) Extracted Eliashberg
function (black line) after dropping the abnormal data point
at �47 meV in Fig. 2(a).
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being determined by optimizing its posterior probability
[15]. Such a scheme should allow a seamless integration
of the existing knowledge of the fine spectral structure
and the newly extracted coupling strengths.

Our systematic procedure to extract the Eliashberg
function has a number of advantages. (i) ARPES has much
wider applicability than the traditional tunneling method
[13]. (ii) ARPES allows measurements along different
directions, so the Eliashberg function �2F�!; �; k̂k�
on the whole Fermi surface could be determined.
(iii) Equation (2), the theoretical basis of our method,
makes only a minimal assumption on the nature of the
system, i.e., a normal Fermi liquid without strong elec-
tronic structure near the Fermi energy. (iv) The procedure
only utilizes the data for Re����, which is easier to
determine and less prone to imperfections than Im����.

Here, our case study also provides new insights to EPC
at the Be�1010� surface. (i) The extracted Eliashberg
function is significantly different from the simple ficti-
tious models (e.g., Debye and Einstein models) previously
used to interpret the data [8,10]. (ii) More than 75% (0.5
out of 0.68) of the enhanced � is contributed by the low
frequency surface modes below 50 meV that are not
present in the bulk phonon spectrum. Similar behavior
is also observed in the Be(0001) surface [14,19]. This
raises the question whether the low frequency surface
phonon modes are responsible for the large mass en-
hancement factors observed in many metal surfaces [4–
11]. (iii) The average phonon frequency [20], ln!log �
�2=��R1

0 d!��2F�!�=! ln!, is calculated to be 29 meV,
which is substantially smaller than its bulk value
(�60 meV) [5]. This reduces the estimated Tc for pos-
sible superconductivity.

In summary, we have proposed a systematic way to
extract the Eliashberg function from the high-resolution

ARPES data. The MEM is employed to overcome the data
imperfections and numerical instability. By using this
technique, we have provided new insights to EPC at the
Be�1010� surface. We expect the technique to be useful,
for instance, in the study of the possible role of EPC in
high-temperature superconductivity.
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FIG. 4 (color online). A test to the data extraction procedure.
Solid line shows the predefined Eliashberg function. The filled
circle with the line shows the extracted Eliashberg function.
Dashed line shows m�!� with parameters !D � 50 meV,
!m � 100 meV, and m0 � 0:24. Inset shows the data presented
to the program and the MEM fitting. Gaussian noise with �i �
1 meV has been added to the self-energy data. T � 30 K.
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